

Meteorological Case Studies of Turbulence Encounters

Richard Ferris

Outline

- Basis for Investigations
- Data Collection
- Case Studies
 - West Palm Beach, FL (Convective)
 - Wilmington, DE (Convective)
 - Cross City, FL (Convective)
 - Cape Girardeau, MO (CAT)
 - Houston, TX (Inconclusive)
- Conclusions
- Future Work

Basis for Investigation

- Assistance to:
 - National Transportation Safety Board (NTSB)
 - Dryden Flight Research Center (DFRC)
- NTSB
 - Analyses to help determine cause of upsets
- DFRC
 - Flight Operations Quality Assurance (FOQA) data
 - Weather analysis of selected turbulence cases
 - Safeguards taken to prevent unauthorized disclosure

Basis for Investigation

- Flight data recorder data alone will not suffice to determine causality
- Need to understand meteorological phenomena to develop an overall avoidance system
- Results will provide insights into issues that arise in both encounter analysis and development of automated systems
- Unclear if one would have identified operationally significant turbulence without apriori knowledge of upset location

Data Collection

- Mishap locations and flight profiles provided by NTSB and FOQA data
- Weather data obtained from National Climatic Data Center
 - NEXRAD Archive Level II
 - Satellite imagery
 - Upper air charts/soundings
 - Surface charts
- Data processed, generated, and analyzed locally

Case Study 1 (NTSB)

- Severe turbulence near West Palm Beach, FL
- One pax seriously injured
- Initially at 16,000 ft
- Loss of over 3000 ft in 30 sec
- Recovered and landed at MIA

- Frontal boundary
- Multi-layered clouds
- Widespread convection
- Winds at altitude: 240/35
- Only available radar-KAMX

- Plan view at incident time
- Nearest convection: 42 dBZ cell approximately 20 km to SSW
- Nothing indicative of severe turbulence

- Incident along 24 degree radial at 128 nm
- Time: Approximately 10 minutes before upset
- Shear zones visible

- Time: Approximately 5 minutes before upset
- Shear zones remain visible

- At time of upset
- 16.5 m/s couplet present approximately 3 km from aircraft

Case Study 1 Conclusions

- Aircraft was flying outside and downwind of convection
- Aircraft experienced upset indicative of severe turbulence
- Initial data revealed nothing exceptional
- Cross-sectional analysis and supporting evidence suggest a convectively induced mid-level windshear may have impacted the aircraft's flight path
- Aircrew flight control inputs were also a major factor

Case Study 2 (FOQA)

Near Wilmington, DE

Heading: 49.6 degrees

Comp. airspeed: 266.0 kts

Altitude: 7712 ft

Auto Pilot: On

Max G: +1.98

- Sfc chart at Incident 91 min.
- Complex low off NJ coast
- Cold front/trough moving through area
- Snow and rainshowers from NE to Virginia

• Satellite images approximately 1 minute after Incident (I)

- 850 mb (5000 ft) winds at I+4.5 hrs. (310/45)
- Trough in area
- Strong cold air advection

NEXRAD reflectivity (left) and velocity (right) during Incident

Enlarged version of previous images during Incident

- Vertical cross section at I 2 min.
- Significant velocity shear

Spectrum width value of 15.5 m/s

Case Study 2 Conclusions

- Aircraft entered line of convection induced by front/trough
- Reflectivity values in area of 27 39 dBZ
- Small but significant velocity shear of 30 m/s present
- Spectrum width indications of severe turbulence
- Upset likely caused by penetration of boundary between line of convection (rising air) and dry slot (sinking air)

Case Study 3 (NTSB)

- Near Cross City, FL
- IMC at cruise altitude of FL330
- One second of moderate turbulence
- Max G: +1.75, -0.28
- One FA seriously injured, two FA and one pax minor injuries

- Sfc chart at I 44 minutes
- Stationary front through area
- High temps/dew points

• IR satellite image at I + 1min

- Level 5 thunderstorm just west of aircraft 1 min <u>before</u> upset
- Rapid motion to southeast

- New thunderstorms at 1.5 minutes <u>after</u> upset to N and NE
- Confirmed by pilot

- Upper level shear noted in both major storms at I + 4 min.
- Max shear of 16.5 knots

Case Study 3 Conclusions

- Original level 5 thunderstorm produced outflow
- Explosive secondary growth, especially at mid-levels
- Level 6 thunderstorm in area likely produced upset

Case Study 4 (NTSB)

- Near Cape Girardeau, MO
- Initial descent from FL230
- "Intense" turbulence for 30 sec
- Max G: +2.5, -0.79
- Two FA hurt, one seriously

- Sfc chart at I + 10 minutes
- Strong surface high over KS/MO
- Fair weather in area

Satellite images at I - 5 minutes

• 500 mb (18,000 ft) winds at I - 4 hours (250/55 kts)

- NEXRAD data 1 minute after upset
- No significant returns

Case Study 4 Conclusions

 Aircraft likely experienced severe CAT associated with jet stream and converging winds at altitude.

Case Study 5 (FOQA)

- Near Houston, TX
- Heading 179.8 degrees
- Comp. airspeed: 232.0 kts
- Altitude: 7648 ft
- Auto Pilot: On/Off
- Max G: +1.74

- Sfc chart at I 1 minute
- Large high off mid-Atlantic
- Cold front exiting Rockies
- Dry line in west Texas
- No sig wx in airspace

IR satellite images taken at I - 16 minutes

- Upper air charts at 850 and 700 mb at I 3 hours
- Vertical profile at I 3 hours (LCH)

- NEXRAD data at I + 1 minute
- Normal clear air returns

Case Study 5 Conclusions

- Deep convection / thunderstorms ruled out
- Aircraft heading directly into warm / moist southerly flow
- At or just above cloud deck
- Possible wind surge not detectable in radar data

Overall Conclusions

- Wide range of causes for in-flight turbulence from convection to the jet stream
- Upsets can be captured by DFDR data but explanations may remain elusive
- High resolution data can assist in determining cause in many instances
- Pilots should continue to adhere to well known thunderstorm and CAT avoidance rules-of-thumb.

Future Work

- Automated turbulence detection needs to integrate:
 - ground and airborne radar
 - thermodynamic and wind profiles
 - satellite data
- Systems to warn of turbulence using airborne radars need to use winds aloft information to determine region of hazard "down wind" of convective cells (Case 1)

Future Work

- Fast update information sensors/systems needed to avoid rapidly developing convective cells (Case 3)
 - ASR9 and ARSR4 (Corridor Integrated Weather System)
 - High update rate convective initiation forecasts
- Convective forecast algorithms can facilitate convective turbulence avoidance
 - Terminal Convective Weather Forecast (TCWF)
 - Regional Convective Weather Forecast (RCWF)
 - National Convective Weather Forecast (NCWF)